


Chapter 3 81

# Vocabulary Builder Visualize It Use the / words to complete the tree map. Estimation / Estimation / place value / round / tenth Preview Words / thousandth

## Understand Vocabulary

#### Read the description. Which word do you think is described?

- 1. One of one hundred equal parts \_\_\_\_\_
- 2. The value of each digit in a number based on the location of the digit
- 3. To replace a number with one that is simpler and is approximately

the same size as the original number \_\_\_\_\_

- 4. One of ten equal parts \_\_\_\_\_
- 5. A familiar number used as a point of reference
- 6. One of one thousand equal parts \_\_\_\_\_



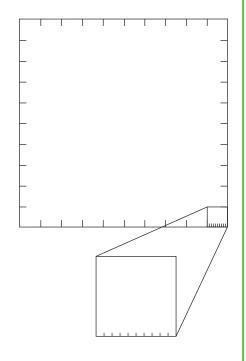
**I Can** describe the relationship between two decimal place-value positions.

## Investigate

Materials color pencils straightedge

Thousandths are smaller parts than hundredths. If one hundredth is divided into ten equal parts, each part is one **thousandth**.

Use the model at the right to show tenths, hundredths, and thousandths.


- **A.** Divide the larger square into 10 equal columns or rectangles. Shade one rectangle. What part of the whole is the shaded rectangle? Write that part as a decimal and a fraction.
- **B.** Divide each rectangle into 10 equal squares. Use a second color to shade in one of the squares. What part of the whole is the shaded square? Write that part as a decimal and a fraction.
- **C.** Divide the enlarged hundredths square into 10 equal columns or rectangles. If each hundredths square is divided into ten equal rectangles, how many parts will the model have?

Use a third color to shade one rectangle of the enlarged hundredths square. What part of the whole is the shaded rectangle? Write that part as a decimal and a fraction.

```
Florida's B.E.S.T.
```

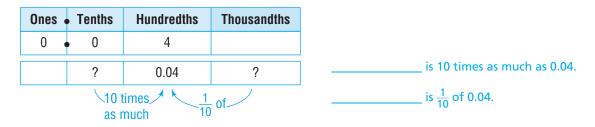
• Number Sense & Operations 5.NSO1.1, 5.NSO1.2, 5.NSO1.3







## **Draw Conclusions**


**1.** Explain what each shaded part of your model in the Investigate section shows. What fraction can you write that relates each shaded

part to the next greater shaded part?

**2.** MTR Identify and describe a part of your model that shows one thousandth. Explain how you know.

# **Make Connections**

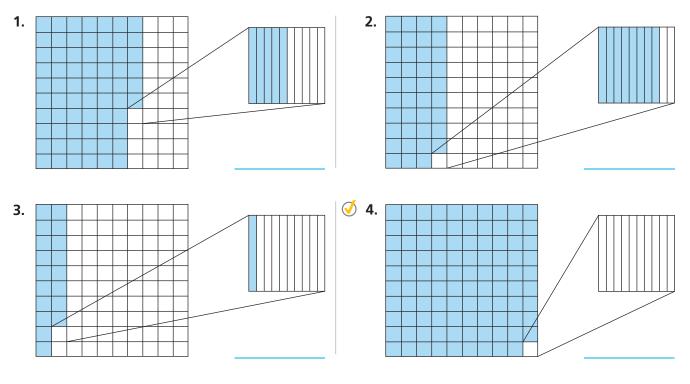
The relationship of a digit in different place-value positions is the same with decimals as it is with whole numbers. You can use your understanding of place-value patterns and a place-value chart to write decimals that are 10 times as much as or  $\frac{1}{10}$  of a decimal.



#### Use the steps below to complete the table.

- **STEP 1** Write the given decimal in a place-value chart.
- **STEP 2** Use the place-value chart to write a decimal that is 10 times as much as the given decimal.
- **STEP 3** Use the place-value chart to write a decimal that is  $\frac{1}{10}$  of the given decimal.

| Decimal | 10 times<br>as much as | $\frac{1}{10}$ of |
|---------|------------------------|-------------------|
| 0.03    |                        |                   |
| 0.1     |                        |                   |
| 0.07    |                        |                   |




MTR Engage in discussions on 4.1 mathematical thinking.

Explain the pattern you see when you move one decimal place value to the right and one decimal place value to the left.

# Share and Show Math Board

Write the decimal shown by the shaded parts of each model.



#### Complete the sentence.

- **5.** 0.6 is 10 times as much as \_\_\_\_\_.
- **7.** 0.008 is  $\frac{1}{10}$  of \_\_\_\_\_.

- $\checkmark$  **6.** 0.007 is  $\frac{1}{10}$  of \_\_\_\_\_.
  - **8.** 0.5 is 10 times as much as \_\_\_\_\_.

|     | Decimal | 10 times<br>as much as | <u>1</u><br>10 of |
|-----|---------|------------------------|-------------------|
| 9.  | 0.2     |                        |                   |
| 10. | 0.07    |                        |                   |
| 11. | 0.05    |                        |                   |
| 12. | 0.4     |                        |                   |

#### Use place-value patterns to complete the table.

|     | Decimal | 10 times<br>as much as | 10 of |
|-----|---------|------------------------|-------|
| 13. | 0.06    |                        |       |
| 14. | 0.9     |                        |       |
| 15. | 0.3     |                        |       |
| 16. | 0.08    |                        |       |

# Problem Solving · Applications

#### Use the table for Problems 17 and 18.

- **17.** A science teacher showed an image of a carpenter bee on a wall. The image is 10 times as large as the actual bee. Then he showed another image of the bee that is 10 times as large as the first image. What is the length of the bee in the second image?
- **18.** An atlas beetle is about 0.14 meter long. How does the length of the atlas beetle compare to the length of a leafcutting bee?

| ſ | MATH   |
|---|--------|
| I | on the |
| l | ► Spot |

**19. WRITE** *Math* Explain how you can use place value to describe how 0.05 and 0.005 compare.

- **20.** MTR Terry, Sasha, and Harry each choose a number. Terry's number is ten times as much as Sasha's. Harry's number is  $\frac{1}{10}$  of Sasha's. Sasha's number is 0.4. What number did each person choose?
- **21.** Choose the numbers that make the statement true.

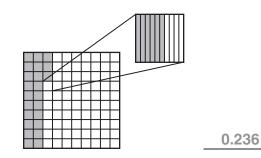
 0.065
 0.065

 0.65 is 10 times as much as
 0.65

 6.5
 and  $\frac{1}{10}$  of

 6.5
 65.0

| n meters)               |  |  |  |  |
|-------------------------|--|--|--|--|
| Bee Lengths (in meters) |  |  |  |  |
| 0.019                   |  |  |  |  |
| 0.025                   |  |  |  |  |
| 0.014                   |  |  |  |  |
| 0.028                   |  |  |  |  |
| 0.006                   |  |  |  |  |
|                         |  |  |  |  |


## Show the Math

Demonstrate Your Thinking

# **Understand Thousandths**

Write the decimal shown by the shaded parts of each model.

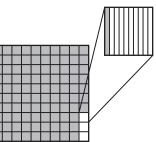
22.



Think: 2 tenths, 3 hundredths, and 6 thousandths are shaded

#### Complete the sentence.

**24.** 0.4 is 10 times as much as \_\_\_\_\_\_.


#### Use place-value patterns to complete the table.

|     | Decimal | 10 times as<br>much as | $\frac{1}{10}$ of |
|-----|---------|------------------------|-------------------|
| 26. | 0.1     |                        |                   |
| 27. | 0.09    |                        |                   |

# Problem Solving

- **30.** The diameter of a dime is seven hundred five thousandths of an inch. Complete the table by recording the diameter of a dime.
- **31.** What is the value of the 5 in the diameter of a half dollar?
- **32.** Which coins have a diameter with a 5 in the hundredths place?

| Practice and Homework |
|-----------------------|
| Go Online             |
| Interactive Examples  |
|                       |



**LESSON 3.1** 

**25.** 0.003 is  $\frac{1}{10}$  of \_\_\_\_\_.

23.

|     | Decimal | 10 times as<br>much as | $\frac{1}{10}$ of |
|-----|---------|------------------------|-------------------|
| 28. | 0.08    |                        |                   |
| 29. | 0.2     |                        |                   |

| U.S. Coins             |       |  |  |
|------------------------|-------|--|--|
| Coin Diameter (in inch |       |  |  |
| Penny                  | 0.750 |  |  |
| Nickel                 | 0.835 |  |  |
| Dime                   |       |  |  |
| Quarter                | 0.955 |  |  |
| Half dollar            | 1.205 |  |  |

**33. WRITE** Math Write four decimals with the digit 4 in a different place in each—ones, tenths, hundredths, and thousandths. Then write a statement that compares the value of the digit 4 in the different decimals.

## **Lesson Check**

**34.** Write a decimal that is  $\frac{1}{10}$  of 3.0.

**35.** A penny is 0.061 inch thick. What is the value of the 6 in the thickness of a penny?

## **Spiral Review**

- **36.** What is the number seven hundred thirty-one million, nine hundred thirty-four thousand, thirty written in standard form?
- **37.** A city has a population of 743,182 people. What is the value of the digit 3?

- **38.** Write an expression to match the words "three times the sum of 8 and 4".
- **39.** A family of 2 adults and 3 children goes to a play. Admission costs \$8 per adult and \$5 per child. What expression would show the total admission cost for the family?

# Read and Write Decimals Through Thousandths

**I Can** read, write, and represent decimals through thousandths.

# UNLOCK the Problem Real World

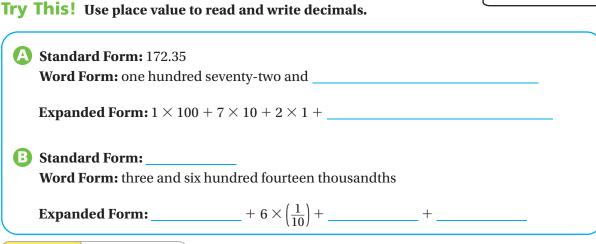
The Brooklyn Battery Tunnel in New York City is 1.726 miles long. It is the longest underwater tunnel for vehicles in the United States. To understand this distance, you need to understand the place value of each digit in 1.726.

You can use a place-value chart to understand decimals. Whole numbers are to the left of the decimal point. Decimals are to the right of the decimal point. The thousandths place is to the right of the hundredths place.

| Tens | Ones o | Tenths                | Hundredths             | Thousandths            |
|------|--------|-----------------------|------------------------|------------------------|
|      | 1 .    | • 7                   | 2                      | 6                      |
|      | 1×1    | $7 	imes rac{1}{10}$ | $2 	imes rac{1}{100}$ | $6	imesrac{1}{1,000}$ |
|      | 1.0    | 0.7                   | 0.02                   | 0.006                  |

The place value of the digit 6 in 1.726 is thousand ths. The value of 6 in 1.726 is 6  $\times \frac{1}{1.000}$  , or 0.006.

### Standard Form: 1.726


Word Form: one and seven hundred twenty-six thousandths

Expanded Form: 
$$1 \times 1 + 7 \times \left(\frac{1}{10}\right) + 2 \times \left(\frac{1}{100}\right) + 6 \times \left(\frac{1}{1,000}\right)$$



MTR Engage in discussions on 4.1 mathematical thinking.

Explain how the place value of the last digit in a decimal can help you read a decimal.



The Brooklyn Battery Tunnel passes under the East River.

Florida's B.E.S.T.

- Number Sense & Operations 5.NSO.1.2, 5.NSO1.3
- Mathematical Thinking & Reasoning MTR.3.1, MTR.4.1, MTR.5.1, MTR.6.1

## **Example** Use a place-value chart.

A common garden spider spins a web with its silk that is about 0.003 millimeter thick. A commonly used sewing thread is about 0.3 millimeter thick. How does the thickness of the spider silk and the thread compare?



**STEP 1** Write the numbers in a place-value chart.

| Ones o | Tenths | Hundredths | Thousandths |
|--------|--------|------------|-------------|
|        |        |            |             |
|        | •<br>• |            |             |
|        | •      |            |             |

- **STEP 2** Count the number of decimal place-value positions to the digit 3 in 0.3 and 0.003.
- 0.3 has \_\_\_\_\_ fewer decimal places than 0.003
- 2 fewer decimal places:  $10 \times 10 =$
- 0.3 is \_\_\_\_\_\_ times as much as 0.003
- 0.003 is \_\_\_\_\_ of 0.3

So, the thread is \_\_\_\_\_\_ times as thick as the garden spider's silk. The thickness of the garden spider's silk is

that of the thread.

You can use place-value patterns to rename a decimal.

#### Try This! Use place-value patterns.

#### Rename 0.3 using other place values.

| 0.300 | 3 tenths   | $3 	imes rac{1}{10}$ |
|-------|------------|-----------------------|
| 0.300 | hundredths | × 1/100               |
| 0.300 |            |                       |

# Share and Show Math Board

**1.** Complete the place-value chart to find the value of each digit.

| 3 •                                                              |             |                        | Thousandth                                                                  | 5       |         |             |                                    |  |
|------------------------------------------------------------------|-------------|------------------------|-----------------------------------------------------------------------------|---------|---------|-------------|------------------------------------|--|
|                                                                  | 5           | 2                      | 4                                                                           |         |         |             |                                    |  |
| 3 × 1                                                            |             | $2 	imes rac{1}{100}$ |                                                                             | } Value |         |             |                                    |  |
|                                                                  | 0.5         |                        |                                                                             | J       |         |             |                                    |  |
|                                                                  |             |                        |                                                                             |         |         |             |                                    |  |
|                                                                  | ue of the u | underlined di          | -                                                                           |         |         |             | 0.054                              |  |
| 860.5 <u>4</u> 3                                                 |             |                        | <b>3.</b> 6. <u>2</u> 34                                                    |         |         | <b>V</b> 4. | 3.95 <u>4</u>                      |  |
|                                                                  |             |                        |                                                                             |         |         |             |                                    |  |
| te the nui                                                       | mber in tv  | wo other form          | 18.                                                                         |         |         |             |                                    |  |
|                                                                  |             | three thousand         |                                                                             | 🧭 6.    | 751.632 |             |                                    |  |
|                                                                  | 2           |                        |                                                                             | _       |         |             |                                    |  |
|                                                                  |             |                        |                                                                             |         |         |             |                                    |  |
|                                                                  |             |                        |                                                                             |         |         |             |                                    |  |
|                                                                  |             |                        |                                                                             |         |         |             |                                    |  |
|                                                                  |             |                        |                                                                             |         |         |             |                                    |  |
|                                                                  |             |                        |                                                                             |         |         |             |                                    |  |
| n You                                                            | r Owr       | n                      |                                                                             |         |         |             |                                    |  |
|                                                                  |             |                        |                                                                             |         |         |             |                                    |  |
|                                                                  |             | n<br>underlined di     |                                                                             |         |         |             |                                    |  |
| te the valu                                                      |             |                        | igit.<br>8. 24. <u>7</u> 26                                                 |         |         | 9.          | 1.06 <u>6</u>                      |  |
| te the valu                                                      |             |                        |                                                                             |         |         | 9.          | 1.06 <u>6</u>                      |  |
| <b>te the val</b><br>0.4 <u>9</u> 6                              |             |                        | <b>8.</b> 24. <u>7</u> 26                                                   |         |         |             |                                    |  |
|                                                                  |             |                        |                                                                             | i       |         |             | 1.06 <u>6</u><br>1,489.37 <u>1</u> |  |
| <b>te the val</b><br>0.4 <u>9</u> 6                              |             |                        | <b>8.</b> 24. <u>7</u> 26                                                   |         |         |             |                                    |  |
| te the value<br>0.4 <u>9</u> 6<br>634. <u>3</u> 99               | ue of the t |                        | <ul> <li>8. 24.<u>7</u>26</li> <li>11. 0.00<u>2</u></li> </ul>              |         |         |             |                                    |  |
| te the value<br>0.4 <u>9</u> 6<br>634. <u>3</u> 99<br>te the num | ue of the t | underlined di          | <ul> <li>8. 24.<u>7</u>26</li> <li>11. 0.00<u>2</u></li> <li>ns.</li> </ul> |         | 537.916 |             |                                    |  |
| te the value<br>0.4 <u>9</u> 6<br>634. <u>3</u> 99<br>te the nur | ue of the t | underlined di          | <ul> <li>8. 24.<u>7</u>26</li> <li>11. 0.00<u>2</u></li> <li>ns.</li> </ul> |         | 537.916 |             |                                    |  |

# Problem Solving · Applications

#### Use the table for problems 15-16.

- **15.** What is the value of the digit 7 in New Mexico's average annual rainfall?
- **16.** Which of the states has an average annual rainfall with the least number in the thousandths place? What is another way to write the total annual rainfall in this state?

| Average Annual Rainfall (in meters) |       |  |  |  |  |  |
|-------------------------------------|-------|--|--|--|--|--|
| California                          | 0.564 |  |  |  |  |  |
| New Mexico                          | 0.372 |  |  |  |  |  |
| New York                            | 1.041 |  |  |  |  |  |
| Wisconsin                           | 0.820 |  |  |  |  |  |
| Maine                               | 1.074 |  |  |  |  |  |

## Show the Math

Demonstrate Your Thinking

- **17.** MTR Damian wrote the number one hundred thirty-four and twenty-three thousandths as 134.23. Describe and correct his error.
- **18.** Dan used a meter stick to measure some seedlings in his garden. One day, a corn stalk was 0.85 m tall. A tomato plant was 0.850 m. A carrot top was 0.085 m. Which plant was shortest?



**19. WRITE** Math Explain how you know that the digit 6 does not have the same value in the numbers 3.675 and 3.756.

**20.** What is the value of the underlined digit? Mark all that apply.

0.5<u>8</u>9

○ 0.8 ○ eight hundredths

$$\circ$$
 0.08  $\circ$  8 × ( $\frac{1}{10}$ )

O eight tenths

| Name                                                                       |                                |            |           |     | LESSON 3.2<br>Practice and Homework |
|----------------------------------------------------------------------------|--------------------------------|------------|-----------|-----|-------------------------------------|
| <b>Read and Write</b>                                                      | ıgh                            |            |           |     |                                     |
| Thousandths                                                                |                                |            |           |     | Go Online<br>Interactive Examples   |
| Write the value of the underli                                             | ned digit.                     |            |           |     |                                     |
| <b>21.</b> 0.2 <u>8</u> 7                                                  | <b>22.</b> 15. <u>3</u>        | 349        |           | 23. | 2.70 <u>4</u>                       |
| 8 hundredths, or 0.08                                                      |                                |            |           |     |                                     |
| <b>24.</b> 96. <u>1</u> 54                                                 | <b>25.</b> 4.00                | 0 <u>6</u> |           | 26. | 317.2 <u>5</u> 8                    |
|                                                                            |                                |            |           |     |                                     |
| Write the number in two othe                                               |                                |            |           |     |                                     |
| <b>27.</b> $3 \times (\frac{1}{10}) + 2 \times (\frac{1}{100}) + 6 \times$ | $\left(\frac{1}{1,000}\right)$ |            | 348.517   |     |                                     |
| <b>29.</b> nine hundred twenty-four                                        | thousandths                    | 30.        | 1,924.075 |     |                                     |
| Problem Solving                                                            | Real<br>World                  |            |           |     |                                     |

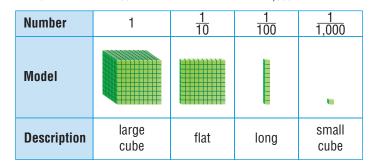
- **31.** In a gymnastics competition, Paige's score was 37.025. What is Paige's score written in word form?
- **32.** Haru's batting average for the softball season is 0.368. What is Haru's batting average written in expanded form?
- **33.** *WRITE Math* Write five decimals that have at least 3 digits to the right of the decimal point. Write the expanded form and the word form for each number.

## **Lesson Check**

- **34.** When Mindy went to China, she exchanged \$1 for 6.589 Yuan. What digit is in the hundredths place of 6.589?
- **35.** The diameter of the head of a screw is 0.306 inch. What is this number written in word form?

## **Spiral Review**

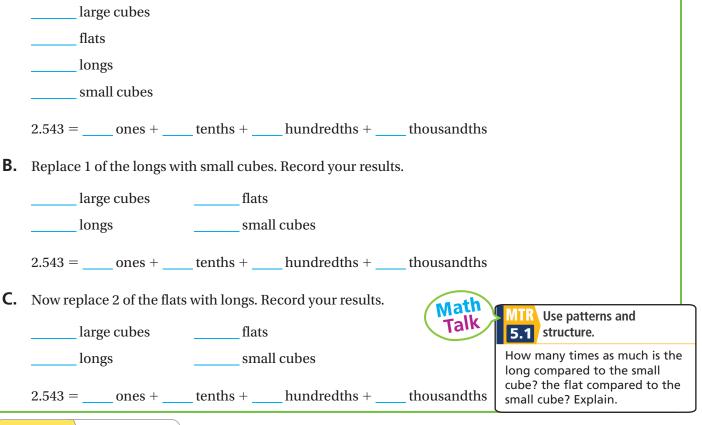
- **36.** Each car on a commuter train can seat 114 passengers. If the train has 7 cars, how many passengers can the train seat?
- **37.** Write a decimal that is  $\frac{1}{10}$  of 6.0.


- **38.** Danica has 15 stickers. She gives 3 to one friend and gets 4 from another friend. What expression would match the words?
- **39.** There are 138 people seated at the tables in a banquet hall. Each table can seat 12 people. All the tables are full except one. How many full tables are there?

**I Can** compose and decompose multi-digit numbers with decimals.



## Materials base-ten blocks


You can use base-ten blocks to understand the relationships among decimal place-value positions. Use a large cube for 1, a flat for  $\frac{1}{10}$ , a long for  $\frac{1}{100}$ , and a small cube for  $\frac{1}{1,000}$ .



#### You can decompose numbers with decimals in different ways.

**A.** Use the blocks to model 2.543.

What did you use? Draw them and list the number of each.



O Houghton Mifflin Harcourt Publishing Company

CHAPTER 3

Florida's B.E.S.T.

- Number Sense & Operations 5.NSO.1.3
- Algebraic Reasoning 5.AR.2.3
- Mathematical Thinking & Reasoning MTR.1.1, MTR.2.1, MTR.5.1

# **Draw Conclusions**

**1.** MTR Why can you replace a long with 10 small cubes?

2. MTR How can you check to see if you decomposed the number correctly?



You can use your understanding of place-value patterns and a place-value chart to write and decompose decimal numbers.

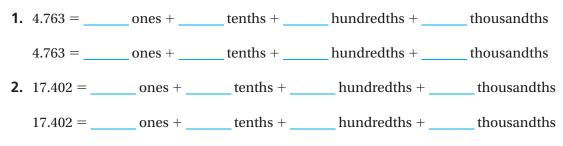
Use the steps below to show different ways to decompose the decimal.

**STEP 1** Build 4.598 with base ten blocks. Draw your blocks.

4.598 = \_\_\_\_ ones + \_\_\_\_ tenths + \_\_\_\_ hundredths + \_\_\_\_ thousandths

**STEP 2** Decompose three of the flats into longs.

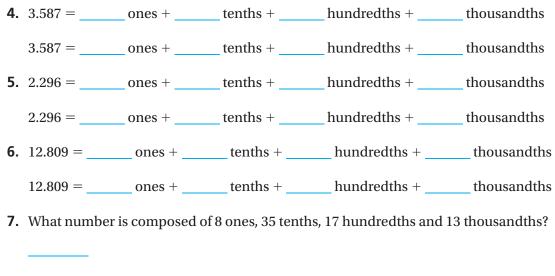
4.598 = \_\_\_\_ ones + \_\_\_\_ tenths + \_\_\_\_ hundredths + \_\_\_\_ thousandths


STEP 3 Now decompose 2 longs into small cubes.

4.598 = \_\_\_\_ ones + \_\_\_\_ tenths + \_\_\_\_ hundredths + \_\_\_\_ thousandths

| Ones           | Tenths                | Hundredths          | Thousandths      |  |
|----------------|-----------------------|---------------------|------------------|--|
| 4              | 5                     | 9                   | 8                |  |
|                |                       |                     |                  |  |
| 10 tir<br>as m | mes 10 ti<br>uch as m | mes 10<br>nuch as n | times<br>nuch as |  |

# Share and Show Moth Board


Decompose the decimal number two different ways.



3. What number is composed of 5 ones, 17 tenths, 22 hundredths and 9 thousandths?

# On Your Own

#### Decompose the decimal number two different ways.



- 8. What number is composed of 4 ones, 21 tenths, 32 hundredths and 4 thousandths?
- 9. What number is composed of 18 ones, 11 tenths, 11 hundredths and 11 thousandths?
- **10. [WRITE** Math Write a decimal number. How many ways can you decompose your number?
- **11.** MTR 0.3 is \_\_\_\_\_\_ times as much as 0.003.
  - 3 tenths = \_\_\_\_\_ thousandths

**12.** Joji and Goro use base-ten blocks to model 3.137. Whose model makes sense? Whose model does not make sense? Explain your reasoning.





**13.** Explain how Goro could make his model represent the number.

**14.** For Problems 14a–14c, choose True or False for each equation.

| 14a. | 5.4 = 54 tenths                         | ⊖ True | ○ False |
|------|-----------------------------------------|--------|---------|
| 14b. | 6.73 = 6  ones + 73  tenths             | O True | ○ False |
| 14c. | 0.492 = 20 hundredths + 292 thousandths | ○ True | ○ False |

# **Compose and Decompose Decimals**

## Decompose the decimal number two different ways.

| 15. | 5.924 =       | ones +        | _tenths +         | _hundredths +          | _thousandths   |
|-----|---------------|---------------|-------------------|------------------------|----------------|
|     | 5.924 =       | _ones +       | _tenths +         | _hundredths +          | _thousandths   |
| 16. | 7.881 =       | _ones +       | _tenths +         | _hundredths +          | _thousandths   |
|     | 7.881 =       | _ones +       | _tenths +         | _hundredths +          | _thousandths   |
| 17. | 13.465 =      | ones +        | tenths +          | hundredths +           | thousandths    |
|     | 13.465 =      | ones +        | tenths +          | hundredths +           | thousandths    |
| 18. | What number i | s composed of | 8 ones, 16 tenths | , 24 hundredths and 37 | 7 thousandths? |

- **19.** What number is composed of 2 ones, 29 tenths, 17 hundredths and 105 thousandths?
- 20. What number is composed of 16 ones, 22 tenths, 33 hundredths and 44 thousandths?

# Problem Solving

- **21.** Earth is about 4.54 billion years old. Decompose 4.54 two different ways.
- **22.** Franklin weighs his puppy in pounds. He decomposes the weight as shown.

8 ones + 13 tenths + 24 hundredths + 176 thousandths

How much does his puppy weigh in pounds?

**23. [WRITE]** Math How does place value help you decompose numbers in different ways?

#### LESSON 3.3 Practice and Homework

Go Online Interactive Examples

## **Lesson Check**

- **24.** Decompose 6.279. Choose all that apply.
  - 5 ones + 12 tenths + 4 hundredths +
     39 thousandths
  - **B** 6 ones + 1 tenth + 8 hundredths + 9 thousandths
  - C 5 ones + 11 tenths + 7 hundredths + 19 thousandths
  - $(\mathbf{D})$  6 ones + 3 hundredths + 249 thousandths

**25.** What number is composed of 13 ones, 24 tenths, 55 hundredths and 117 thousandths?

## **Spiral Review**

**26.** Write the decimal.

twenty-six and four hundred eighteen thousandths

- **27.** Divide. Write the remainder as a fraction.
  - 85,723 ÷ 9

**28.** Estimate the quotient.

5,572 ÷ 8

**29.** Jeremy has 374 baseball cards. He keeps them in a book that holds 6 cards per page. How many pages in his book are full? How many cards are on the last page?

# **Compare and Order Decimals**



I Can ) use place value to compare and order decimals.

#### Rea UNLOCK the Problem

The table lists some of the mountains in the United States that are over two miles high. How does the height of Cloud Peak in Wyoming compare to the height of Boundary Peak in Nevada?

| Mountain Heights          |                   |  |  |  |  |
|---------------------------|-------------------|--|--|--|--|
| Mountain and State        | Height (in miles) |  |  |  |  |
| Boundary Peak, Nevada     | 2.488             |  |  |  |  |
| Cloud Peak, Wyoming       | 2.495             |  |  |  |  |
| Grand Teton Peak, Wyoming | 2.607             |  |  |  |  |
| Wheeler Peak, New Mexico  | 2.493             |  |  |  |  |



The Tetons are located in Grand Teton National Park.

## **One Way** Use place value.

Line up the decimal points. Start at the left. Compare the digits in each placevalue position until the digits are different.

| <b>STEP 1</b> Compare the ones.                   | STEP 2                                                       | Compare the ter  | nths. <b>STEP 3</b> Compare the hundredths.                                              |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------|--|--|--|
| 2.495<br>↓ 2 = 2<br>2.488                         | 2.495<br>↓<br>2.488                                          | 4 4              | 2.495<br>↓ 9 8<br>2.488                                                                  |  |  |  |
| Since 9 8, then 2.495 2                           | .488, and 2.48                                               | 38 2.495.        |                                                                                          |  |  |  |
| So, the height of Cloud Peak is of Boundary Peak. | So, the height of Cloud Peak is the height of Boundary Peak. |                  |                                                                                          |  |  |  |
| Another Way Use a                                 | place-value                                                  | chart to compare | е.                                                                                       |  |  |  |
| Compare the height of Cloud P                     | eak to Wheel                                                 | er Peak.         | an ab                                                                                    |  |  |  |
| Ones Tenths                                       | lundredths                                                   | Thousandths      | Math<br>Talk MIR Engage in discussions on<br>4.1 mathematical thinking.                  |  |  |  |
| 0 1                                               | 0                                                            |                  |                                                                                          |  |  |  |
| 2 • 4                                             | 9                                                            | 5                | Explain why it is important to                                                           |  |  |  |
| 2 • 4<br>2 • 4                                    | 9<br>9                                                       | 5<br>3           | Explain why it is important to<br>line up the decimal points when<br>comparing decimals. |  |  |  |

**CHAPTER 3** 

#### Florida's B.E.S.T.

Number Sense & Operations 5.NSO.1.4

Mathematical Thinking & Reasoning MTR.2.1, MTR.3.1, MTR.4.1, MTR.5.1, MTR.6.1

## **Examples**

You can use place value to order decimal numbers.

Mount Whitney in California is 2.745 miles high, Mount Rainier in Washington is 2.729 miles high, and Mount Harvard in Colorado is 2.731 miles high. Order the heights of these mountains from least to greatest.

#### **STEP 1**

Line up the decimal points. There are the same number of ones. Circle the tenths and compare.

- 2.745 Whitney
- 2.729 Rainier
- 2.731 Harvard

STEP 2 Underline the hundredths and compare. Order from least to greatest. 2.745 Whitney 2.729 Rainier 2.731 Harvard Since , the heights in order from least to greatest are Math MIR Engage in discussions on **4.1** mathematical thinking. has the greatest height. Explain why you do not compare the digits in the

#### has the least height and So,

There are the same number of tenths.

Try This! Use a place-value chart.

What is the order of 1.383, 1.321, 1.456, and 1.32 from greatest to least?

- Write each number in the place-value chart. Compare the digits, beginning with the greatest place value.
- Compare the ones. The ones are the same.
- Compare the tenths. 4 > 3.

The greatest number is Circle the greatest number in the place-value chart.

• Compare the remaining hundredths. 8 > 2.

The next greatest number is Draw a rectangle around the number.

Compare the remaining thousand ths. 1 > 0.

So, the order of the numbers from greatest to least is:

| Ones o | Tenths | Hundredths | Thousandths |
|--------|--------|------------|-------------|
| 1 0    | 3      | 8          | 3           |
| 1 .    | •      |            |             |
| 1      | •      |            |             |
| 1      |        |            |             |

thousandths place to order the heights of the 3 mountains.

Houghton Mifflin Harcourt Publishing Company

| Nar | ne                                                                          |               |                 |       |         |       | _        |                      |             |   |
|-----|-----------------------------------------------------------------------------|---------------|-----------------|-------|---------|-------|----------|----------------------|-------------|---|
| S   | hare and Show                                                               | Math<br>Board |                 |       |         |       |          |                      |             |   |
| 1.  | Use the place-value chart to                                                | -             |                 |       | Ones    | •     | Tenths   | Hundredths           | Thousandths |   |
|     | numbers. What is the greatest place-value position where the digits differ? |               | _               | 3     | •       | 4     | 7        | 2                    |             |   |
|     |                                                                             |               |                 |       | 3       | •     | 4        | 4                    | 5           |   |
| Con | npare. Write <, >, or =.                                                    |               |                 |       |         |       |          |                      |             |   |
|     | 4.563 4.536                                                                 | 3.            | 5.640 5.64      |       |         |       | Ø        | 4. 8.673             | 8.637       |   |
|     | ne the greatest place-value<br>ne the greater number.                       | position      | where the digit | ts di | ffer.   |       |          |                      |             |   |
| 5.  | 3.579; 3.564                                                                | 6.            | 9.572; 9.637    |       |         |       | Ś        | <b>7.</b> 4.159; 4.1 | 52          |   |
|     |                                                                             |               |                 |       |         |       |          |                      |             |   |
| Ord | er from least to greatest.                                                  |               |                 |       |         |       |          |                      |             | _ |
| 8.  | 4.08; 4.3; 4.803; 4.038                                                     |               |                 | 9.    | 1.703   | ; 1.0 | 037; 1.3 | 37; 1.073            |             |   |
| 0   | n Your Own                                                                  |               |                 |       |         |       |          |                      |             |   |
| Con | npare. Write <, >, or =.                                                    |               |                 |       |         |       |          |                      |             |   |
| 10. | 8.72 8.720                                                                  | 11.           | 5.4 5.243       |       |         |       | 1        | <b>2.</b> 1.036      | 1.306       |   |
| 13. | 2.573 2.753                                                                 | 14.           | 9.300 9.3       |       |         |       | 1        | 5. 6.76              | 6.759       |   |
| Ord | er from greatest to least.                                                  |               |                 |       |         |       |          |                      |             |   |
| 16. | 2.007; 2.714; 2.09; 2.97                                                    |               |                 | 17.   | 0.275   | ; 0.2 | 2; 0.572 | 2; 0.725             |             |   |
| 18. | 5.249; 5.43; 5.340; 5.209                                                   |               |                 | 19.   | 0.678   | ; 1.0 | 678; 0.5 | 587; 0.687           |             |   |
| M   | <b>IR</b> Find the unknown digi                                             | t to make     | each statemen   | ıt tr | ue.     |       |          |                      |             |   |
| 20. | 3.59 > 3.5 1 > 3.572                                                        | 21.           | 6.837 > 6.83    | >     | > 6.835 | 5     | 2        | <b>22.</b> 2.45 < 2. | 6 < 2.461   |   |

© Houghton Mifflin Harcourt Publishing Company

# Problem Solving · Applications

#### Use the table for problems 23-26.

- **23.** In comparing the height of the mountains, which is the greatest place value where the digits differ?
- **24. MTR** How does the height of Mount Steele compare to the height of Mount Blackburn? Compare the heights using words.

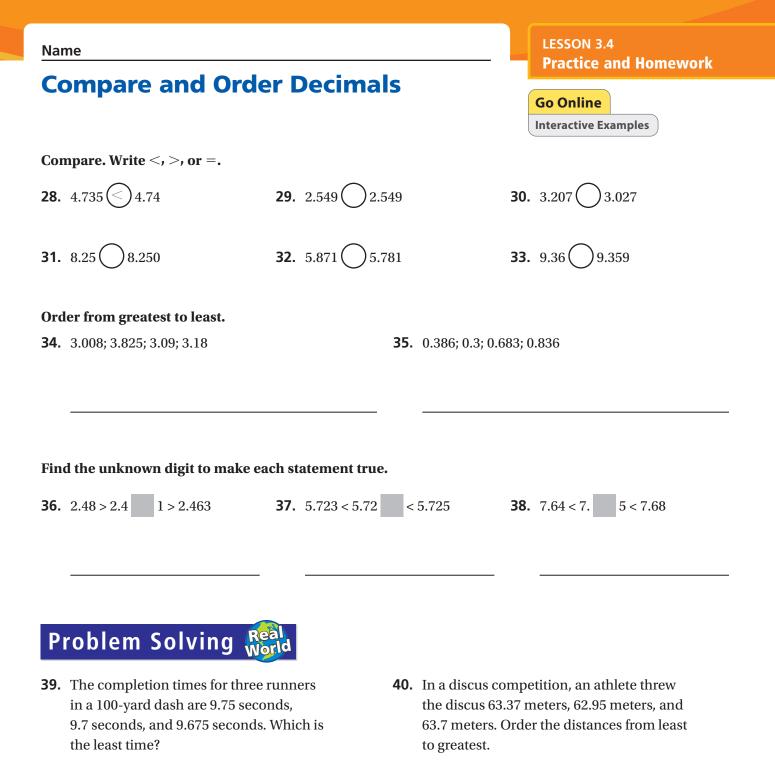


| Mountains Over Three Miles High |                   |  |  |  |  |
|---------------------------------|-------------------|--|--|--|--|
| Mountain and Location           | Height (in miles) |  |  |  |  |
| Mount Blackburn, Alaska         | 3.104             |  |  |  |  |
| Mount Bona, Alaska              | 3.134             |  |  |  |  |
| Mount Steele, Yukon             | 3.152             |  |  |  |  |

**25.** Explain how to order the heights of the mountains from greatest to least.

**26.** What if the height of Mount Blackburn were 0.05 mile greater? Would it then be the mountain with the greatest height? Explain.




**27.** Orlando kept a record of the total rainfall each month for 5 months.

| Month | Rainfall (in.) |
|-------|----------------|
| March | 3.75           |
| April | 4.42           |
| May   | 4.09           |
| June  | 3.09           |
| July  | 4.04           |

Order the months from the least amount of rainfall to the greatest amount of rainfall.



C Houghton Mifflin Harcourt Publishing Company • Image Credits: (tr) CL. Clarke/Corbis



**41. WRITE** Math Write a word problem that can be solved by ordering

three decimals to thousandths. Include a solution.

Chapter 3 • Lesson 4 105

## **Lesson Check**

Jay, Alana, Evan, and Stacey work together to complete a science experiment. The table at the right shows the amount of liquid left in each of their beakers at the end of the experiment.

| Student Amount of liquid (liter |      |  |
|---------------------------------|------|--|
| Jay                             | 0.8  |  |
| Alana                           | 1.05 |  |
| Evan                            | 1.2  |  |
| Stacey                          | 0.75 |  |

- **42.** Whose beaker has the greatest amount of liquid left in it?
- **43.** Whose beaker has the least amount of liquid left in it?

## **Spiral Review**

- **44.** Ganyu walked 3.75 miles yesterday. What is the word form of 3.75?
- **45.** A dance school allows a maximum of 15 students per class. If 112 students sign up for dance class, how many classes does the school need to offer to accommodate all the students?

- **46.** Tommy has 3 large jars filled with marbles. He has a total of 450 marbles. How many marbles are in each jar?
- **47.** Ahmed cut 2 apples into 6 slices each. He ate 9 slices. What expression matches the words?

# **Round Decimals**

(I Can) use place value to round decimals to a given place.

# UNLOCK the Problem Real World

The Gold Frog of South America is one of the smallest frogs in the world. It is 0.386 of an inch long. What is this length rounded to the nearest hundredth of an inch?

#### **One Way** Use a place-value chart.

- Write the number in a place-value chart and circle the digit in the place to which you want to round.
- In the place-value chart, underline the digit to the right of the place to which you are rounding.
- If the digit to the right is less than 5, the digit in the place to which you are rounding stays the same. If the digit to the right is 5 or greater, the digit in the rounding place increases by 1.
- Drop the digits after the place to which you are rounding.

So, to the nearest hundredth of an inch, a Gold Frog is

about \_\_\_\_\_ inch long.

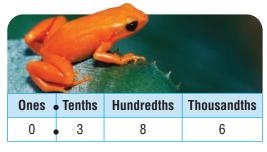
## Another Way Use place value.

The Little Grass Frog is the smallest frog in North America. It is 0.437 inch long.

```
What is the length of the frog to the nearest hundredth of an inch?
```

```
\begin{array}{ccc} 0.437 & 7 > 5 \\ \downarrow \\ 0.44 \end{array}
```

So, to the nearest hundredth of an inch, the frog


is about \_\_\_\_\_ inch long.

 Number Sense & Operations 5.NSO.1.5
 Mathematical Thinking & Reasoning MTR.2.1, MTR.3.1, MTR.4.1, MTR.5.1, MTR.6.1

**CHAPTER 3** 

Lesson 5

- Underline the length of the Gold Frog.
- Is the frog's length about the same as the length or the width of a large paper clip?



**Think:** Does the digit in the rounding place stay the same or increase by 1?

B What is the length of the frog to the nearest tenth of an inch?

0.437 3 < 5 ↓ 0.4

So, to the nearest tenth of an inch, the frog is

about \_\_\_\_\_ inch long.

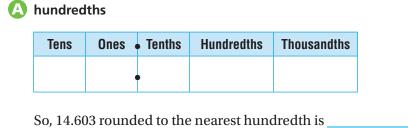
## Example

The Goliath Frog is the largest frog in the world. It is found in the country of Cameroon in West Africa. The Goliath Frog can grow to be 11.815 inches long. How long is the Goliath Frog to the nearest inch?

**STEP 1** Write 11.815 in the place-value chart.

| Tens | Ones d | Tenths | Hundredths | Thousandths |
|------|--------|--------|------------|-------------|
|      |        |        |            |             |
|      |        |        |            |             |

**STEP 2** Find the place to which you want to round. Circle the digit.


**STEP 3** Underline the digit to the right of the place to which you are rounding. Then round.

**Think:** Does the digit in the rounding place stay the same or increase by 1?

So, to the nearest inch, the Goliath Frog is about \_\_\_\_\_ inches long.

MTR Explain why any number less than 12.5 and greater than or equal to 11.5 would round to 12 when rounded to the nearest whole number.

Try This! Round 14.603 to the place named.



B ones

| Tens | Ones o | Tenths | Hundredths | Thousandths |
|------|--------|--------|------------|-------------|
|      |        |        |            |             |
|      |        |        |            |             |

So, 14.603 rounded to the nearest ones is





MTR Engage in discussions on 4.1 mathematical thinking.

How would your answer change if the frog were 11.286 inches long?

Circle and underline the digits as you did above to help you round to the

Circle and underline the digits as you did above to help you round to the

nearest hundredth.

nearest whole number.

| <b>I.</b> 0.6 <u>7</u> 3                                                                                                   | e of the underlined d $      2. $          | -                                         | 3.          | 1 <u>2</u> .917      |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------|----------------------|
|                                                                                                                            |                                            |                                           | _           |                      |
| ame the place valu                                                                                                         | e to which each nur                        | nber was rounded.                         |             |                      |
| <b>4.</b> 0.982 to 0.98                                                                                                    | 5.                                         | 3.695 to 4                                | <b>Ø</b> 6. | 7.486 to 7.5         |
| On Your Ov                                                                                                                 | vn                                         |                                           |             |                      |
| -                                                                                                                          | e of the underlined<br>of the underlined d | •                                         |             |                      |
| <b>7.</b> 0. <u>5</u> 92                                                                                                   | 8.                                         | <u>6</u> .518                             | 9.          | 0.8 <u>0</u> 9       |
|                                                                                                                            |                                            |                                           |             |                      |
|                                                                                                                            | 11.                                        | 12. <u>0</u> 74                           | 12.         | 4.4 <u>9</u> 4       |
| <b>0.</b> 3. <u>3</u> 34                                                                                                   |                                            |                                           |             |                      |
| <b>0.</b> 3. <u>3</u> 34                                                                                                   |                                            |                                           | _           |                      |
|                                                                                                                            | ie to which each nur                       | nber was rounded.                         | _           |                      |
| Name the place valu                                                                                                        |                                            | <b>nber was rounded.</b><br>2.607 to 2.61 | 15.         | 12.583 to 13         |
| <ul> <li>10. 3.<u>3</u>34</li> <li>Name the place value</li> <li>13. 0.328 to 0.33</li> <li>Round 16.748 to the</li> </ul> | 14.                                        |                                           | 15.         | 12.583 to 13         |
| Name the place value<br><b>3.</b> 0.328 to 0.33                                                                            | 14.<br>place named.                        |                                           |             | 12.583 to 13<br>ones |
| Name the place value         3. 0.328 to 0.33         Round 16.748 to the         6. tenths                                | 14.<br>place named.<br>17.                 | 2.607 to 2.61                             | 18.         |                      |

# Problem Solving · Applications Real

#### Use the table for problems 20-22.

- **20.** The speeds of two insects when rounded to the nearest whole number are the same. Which two insects are they?
- **21.** What is the speed of the housefly rounded to the nearest hundredth?
- **22.** Mark said that the speed of a dragonfly rounded to the nearest tenth was 6.9 meters per second. Is he correct? If not, what is his error?

| Insect Speeds (meters per second) |       |  |  |  |
|-----------------------------------|-------|--|--|--|
| Insect Speed                      |       |  |  |  |
| Dragonfly                         | 6.974 |  |  |  |
| Horsefly                          | 3.934 |  |  |  |
| Bumblebee                         | 2.861 |  |  |  |
| Honeybee                          | 2.548 |  |  |  |
| Housefly                          | 1.967 |  |  |  |
|                                   | 701   |  |  |  |





## Show the Math

Demonstrate Your Thinking

**23.** MTR A rounded number for the speed of an insect is 5.67 meters per second. What are the fastest and slowest speeds to the thousandths that could round to 5.67 meters per second? Explain.

- 24. The price of a certain box of cereal at the grocery store is
  \$0.258 per ounce. For 24a-24c, select True or False for each statement.
  - **24a.** Rounded to the nearest whole number, True False the price is \$1 per ounce.
  - **24b.** Rounded to the nearest tenth, O True O False the price is \$0.3 per ounce.
  - **24c.** Rounded to the nearest hundredth, O True O False the price is \$0.26 per ounce.

| Nai            | Name                                                                  |       |                  |     | LESSON 3.5<br>Practice and Homework |
|----------------|-----------------------------------------------------------------------|-------|------------------|-----|-------------------------------------|
| Round Decimals |                                                                       |       |                  | _   | Go Online<br>Interactive Examples   |
|                | te the place value of the underli<br>nber to the place of the underli |       | -                |     |                                     |
| 25.            | 0. <u>7</u> 82                                                        | 26.   | <u>4</u> .735    | 27. | 2. <u>3</u> 48                      |
|                |                                                                       |       |                  |     |                                     |
|                |                                                                       |       |                  |     |                                     |
| 28.            | 0.5 <u>0</u> 6                                                        | 29.   | 15. <u>1</u> 86  | 30. | 8.4 <u>6</u> 5                      |
|                |                                                                       |       |                  |     |                                     |
| Nar            | ne the place value to which eacl                                      | - nur | nher was rounded |     |                                     |
|                | 0.546 to 0.55                                                         |       | 4.805 to 4.8     | 33. | 6.493 to 6                          |
|                |                                                                       |       |                  |     |                                     |
| Roi            | Ind 18.194 to the place named.                                        |       |                  |     |                                     |
| 34.            | tenths                                                                | 35.   | hundredths       | 36. | ones                                |

# Problem Solving

- **37.** The population density of Montana is 6.699 people per square mile. What is the population density per square mile of Montana rounded to the nearest whole number?
- **38.** Alex is mailing an envelope that weighs 0.346 pound. What is the weight of the envelope rounded to the nearest hundredth?

**39. [WRITE** *Math* Describe how to round 3.987 to the nearest tenth.

## **Lesson Check**

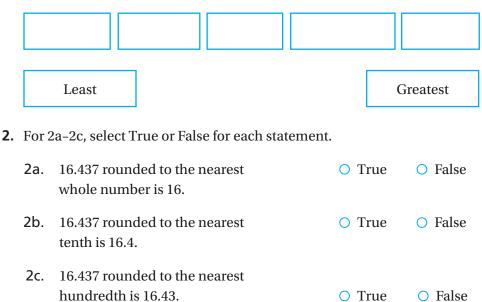
- **40.** Ms. Ari buys and sells diamonds. She has a diamond that weighs 1.825 carats. What is the weight of Ms. Ari's diamond rounded to the nearest hundredth?
- **41.** A machinist uses a special tool to measure the diameter of a small pipe. The measurement tool reads 0.276 inch. What is this measure rounded to the nearest tenth?

## **Spiral Review**

**42.** Four ice skaters participate in an ice skating competition. The table shows their scores. Who has the highest score?

| Name    | Points |
|---------|--------|
| Natasha | 75.03  |
| Taylor  | 75.39  |
| Rowena  | 74.98  |
| Suki    | 75.3   |

**43.** Write a decimal that is  $\frac{1}{10}$  of 0.9.


- **44.** Sam types 44 words per minutes. How long does it take Sam to type 1,232 words?
- **45.** Joseph needs to find the quotient of  $3,216 \div 8$ . In what place is the first digit in the quotient?

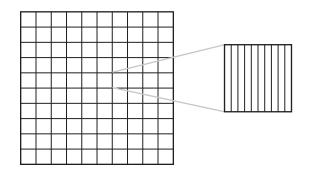
# **Chapter Review**

1. Chaz kept a record of how many gallons of gas he purchased each day last week.

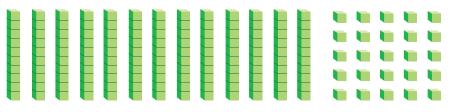
| Day       | Gas (in gallons) |
|-----------|------------------|
| Monday    | 4.5              |
| Tuesday   | 3.9              |
| Wednesday | 4.258            |
| Thursday  | 3.75             |
| Friday    | 4.256            |

Order the days from least amount of gas Chaz purchased to greatest amount of gas Chaz purchased.




- **3.** Decompose the decimal 2 different ways.
  - 1. 5.682 = \_\_\_\_\_ ones + \_\_\_\_\_ tenths + \_\_\_\_\_ hundredths
    - + \_\_\_\_\_ thousandths
    - 5.682 =\_\_\_\_\_ ones + \_\_\_\_\_ tenths + \_\_\_\_\_ hundredths
    - + \_\_\_\_\_ thousandths




4. What is the value of the underlined digit? Mark all that apply.

0.<u>6</u>79

- $\bigcirc$  0.6  $\bigcirc$  six hundredths
- $\bigcirc 0.06$   $\bigcirc 6 \times \frac{1}{10}$
- six tenths
- **5.** Eduar jogged 3.26 kilometers when rounded to the nearest hundredth. Which could be how far he jogged? Mark all that apply.
  - O 3.257 km
  - O 3.254 km
  - 3.272 km
  - 3.261 km
- **6.** Shade the model to show the decimal 0.542.



7. Julienne models the number 1.325 with base ten blocks.



Is she correct? Explain.

**8.** Round 25.999 to the nearest hundredth. Explain.

- **9.** What number is composed of 7 ones, 11 tenths, 12 hundredths and 41 thousandths?
- **10.** Write the number 0.783 in two other forms.

the price is \$0.65 per ounce.

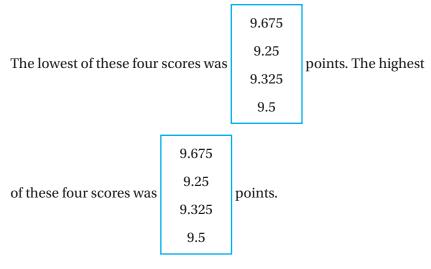
word form:

expanded form:

**11.** The price of hand soap at the grocery store is \$0.649. For 11a-11c, select True or False for each statement.

| 11a. | Rounded to the nearest whole number,<br>the price is \$1 per ounce. | ○ True | ○ False |
|------|---------------------------------------------------------------------|--------|---------|
| 11b. | Rounded to the nearest tenth,<br>the price is \$0.7 per ounce.      | ○ True | ○ False |
| 11c. | Rounded to the nearest hundredth,                                   | ○ True | O False |

C Houghton Mifflin Harcourt Publishing Company


**12.** Complete the table.

| Decimal | 10 times<br>as much as | $\frac{1}{10}$ of |
|---------|------------------------|-------------------|
| 0.08    |                        |                   |
| 0.2     |                        |                   |
| 0.6     |                        |                   |
| 0.05    |                        |                   |

**13.** Rafael bought 2.15 pounds of potato salad and 4.2 pounds of macaroni salad to bring to a picnic. For 13a–13c, select Yes or No to indicate whether each statement is true.

| 13a. | Rounded to the nearest whole number,<br>Rafael bought 2 pounds of potato salad.   | ⊖ Yes | O No |
|------|-----------------------------------------------------------------------------------|-------|------|
| 13b. | Rounded to the nearest whole number,<br>Rafael bought 4 pounds of macaroni salad. | ○ Yes | O No |
| 13c. | Rounded to the nearest tenth, Rafael bought 2.1 pounds of potato salad.           | ⊖ Yes | O No |

**14.** The four highest scores on the floor exercise at a gymnastics meet were 9.675, 9.25, 9.325, and 9.5 points. Choose the numbers that make the statement true.

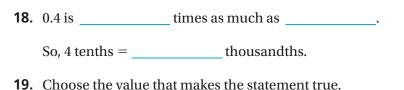


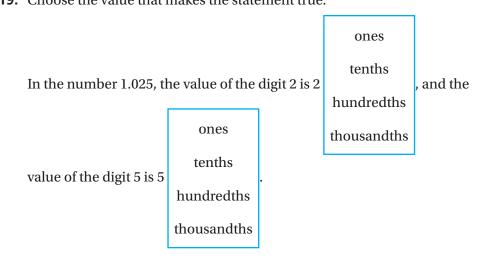
#### Name \_

**15.** Michelle records the value of 1 euro in U.S. dollars each day for her social studies project. The table shows the data she has recorded so far.

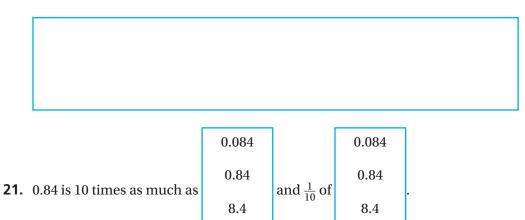
| Day       | Value of 1 Euro<br>(in U.S. dollars) |
|-----------|--------------------------------------|
| Monday    | 1.448                                |
| Tuesday   | 1.443                                |
| Wednesday | 1.452                                |
| Thursday  | 1.458                                |

On which two days was the value of 1 euro the same when rounded to the nearest hundredth of a dollar?


- **16.** Estee, Sarai, and Kurry each chose a number. Estee's number is  $\frac{1}{10}$  of Sarai's. Kurry's number is 10 times as much as Sarai's. Sarai's number is 0.09. What number did each person choose?
- **17.** Karis has plants that are 16.407 centimeters, 16.427 centimeters tall, and 16.413 centimeters tall.


## Part A

To compare the heights of the plants, which is the place value that you will consider? Explain.


## Part B

Order the heights of the plants from tallest to shortest.





**20.** A rounded number for the weight of a puppy is 15.87 pounds. What are the least and greatest weights to the thousandths that could round to 15.87 pounds? Explain.



84

84

C Houghton Mifflin Harcourt Publishing Company